Software Requirements Specification (SRS)
Super Math Maker

Team: 4

Authors: Nick Haselton, Geoffrey Higgins, Adam Corkhum, Daniel Stark,
Christopher Jimenez

Customer: 4th-8th Graders

Instructor: Dr. Daly

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

1 Introduction

This document is a software requirement specification (SRS) for Super Math
Maker, a 2-D platformer that helps users practice their math skills, which describes what
the software does and how it operates.

1.1 Purpose

The purpose of this software requirements specification document is to provide
information on the requirements and functionality of this project, Super Math Maker, and
how it will play. This document will contain a requirements list, diagrams outlining its
functionality, and descriptions on the game’s purpose, features, and constraints. This
document is intended for the developers of the project to have a concise blueprint and
guide for how the game shall function and what it shall contain. This document is also
for the clients (Dr. Daly) so that they may review and understand how the work is being
completed and that they understand the workings and design of the project, as well as the
development team behind it.

1.2 Scope

The video game that is being created is titled “Super Math Maker”. Super Math
Maker will be an educational video game that allows users to complete levels that are
inspired from platformer games at difficulties dependent on their math skills. Users will
be quizzed on math topics in the 4th to 8th grade range in order to craft their own path to
the objective of a level. Users will be motivated to sharpen their math skills in order to
unlock new possibilities for traversing levels. The application domain will be STEM
education in schools, as teachers can present the game to their students as a fun way to
practice their skills.

1.3 Definitions, acronyms, and abbreviations

Super Math Maker: The title of the 2D platformer game that reinforces math skills
User: The person interacting with the game
Character: The User’s character in game

Level: A course which the character begins in the far left and must reach the end to
progress

Life: Keeps track of how many times the character is able to take a hit before the game
over screen

Hitbox: An object that checks for collision with the character and if so a life is taken
away

Platform: An object which the character can stand on

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

Pitfall: A gap which results in the character dying if they fall in

Assist: A placeable object from the character which helps them complete the level
Trap: A stationary object that kills the character if collided with

Enemy: Dynamic entities that the character must avoid

Goal: Marks the end of a level

Power-up: Bonus effects that help the character such as increased jump or movement
speed

Points: Currency earned from the user answering questions correctly on the math quiz
that are spent in the shop

Shop: Place where the user can purchase assists or power-ups using their points

Level Editor: Phase of the level where the user can purchase power-ups or assists from
the shop and place them on the level

Ul: User Interface

1.4 Organization

The rest of the SRS is broken down as follows:

Section 2 contains an overview of what Super Math Maker actually is, and how
the game is played. Section 2.1 outlines the context for the product and how the user and
software interfaces are laid out. 2.2 specifies the functions— both the back-end functions
which the user doesn’t notice and the functions which the user directly interacts with.
Section 2.3 specifies the expectations of the user, and 2.4 demonstrates the software,
hardware, design and regulatory constraints. 2.5 states the assumptions of the software
and of the user, and 2.6 displays the diagrams for each of the functions.

Section 3 lists the complete requirements for the project. It mentions all of the
expectations of the user and game, some of which may not be implemented.

The modeling requirements make up section 4. This consists of all of the use case
diagrams, class diagrams and sequence diagrams.

Section 5 contains the information for the prototype. It contains a preview of what
the user should expect when playing the game and an example playthrough of the game.

Lastly, section 6 has all of the references and section 7 is the point of contact.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2 Opverall Description

Super Math Maker is an educational video game centered around teaching math to
students in upper elementary school. The game focuses on math topics such as fractions,
multiplication, division and simple geometry. Super Math Maker is a 2-dimensional
platformer where the user gets to add elements to the level in order to make it easier to
complete.

In the rest of this section, the product perspective and its interfaces will be
described, followed by the product functions. Here, the inner workings of the project and
its goals, along with how they are accomplished will be detailed. Next, the characteristics
of the intended users will be covered in order to specify the intended demographic. Then,
the constraints of the project such as regulatory, design, hardware and software
constraints will be described. That will be followed by the assumptions of the digital
environment that the software is used in and what the software depends on to function.
Finally, the section will wrap up with a description of features that are not present in the
current iteration of the game.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.1 Product Perspective

Super Math Maker is an educational platform game targeted towards late
elementary to early middle school students with a desire to learn math while still doing
something they enjoy, gaming. This game works by quizzing the students on various
math concepts which rewards them with points they can spend to add objects to each
subsequent level in the platformer. This makes the game replayable and open to creative,
out of the box solutions to each level.

The game is designed to run on low-end computers using the Microsoft Windows
operating system. Its wide range of hardware accessibility will ensure that most school
computers will be able to run the game. The game only requires a keyboard and mouse in
order to play. After launching the game, users will be greeted by a minimalist user
interface that emphasizes getting right to the action. Users will then select from various
topics ranging from 4th to 8th grade mathematics, including fractions, pre-algebra and
geometry. The educational content follows age-appropriate guidance from the
Massachusetts Department of Elementary and Secondary Education, including fractions,
pre-algebra, and geometry.

Super Math Maker emphasizes learning — when users get an answer wrong, they
will be shown the correct answer, as well as how to arrive at said answer. The satisfying
gameplay loop ensures kids will try to achieve the highest score possible in order to
maximize their chances at succeeding in each level. At the beginning of each level, they
will start with three lives and whatever upgrades they were able to attain from the shop,
which they will then be able to use accordingly. Upon completion, they will be shown
their total score, which will give users a sense of pride and accomplishment if they are
able to beat their peers.

The diagram below depicts how the gameplay loop in Super Math Maker works.

@@

javigate Character to
Goal

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.2 Product Functions

The goal of Super Math Maker is to provide students with a way to practice their
math skills in a form that is more engaging than traditional homework assignments.
When the game is launched the user is brought to the main menu that contains a button to
start the game and one that exits the application. When the start button is pressed the user
selects one of three math topics; pre-algebra, geometry or fractions.

The quiz will begin when the user selects a math topic. The user is given a set
amount of time to answer as many questions correctly as possible. Questions will be
selected based on the topic the user has chosen on the menu. Each problem will be one of
a few possible formats (ex. a geometry question may be one asking to calculate area or
perimeter). The values of the question will be randomly generated in order to make each
quiz unique. The solution will be entered in by the user and the program will check if the
value is correct and then another question appears. If the answer is correct then the user
gains points to be used on the shop, otherwise they gain no points and the next question is
presented. The quiz will continue to present questions until the timer on the quiz reaches
zero at which point the game proceeds to the level editor and shop section, where the user
can use the points they earned on the quiz. Users are motivated to learn the math used in
these quizzes by the opportunity to modify the game level further with the use of shop
points.

Upon finishing the quiz the user will enter the level editor phase. This phase
consists of a shop where the user can purchase placeable objects or other power-ups along
with the level which the user can inspect and look through. The user can drag objects
from the shop onto the screen, spending points and placing the new objects on to the level
they will soon play. Once they’re ready the user can click the “Play Game” button to start
the game.

The character spawns on the far left side of the level and moves around using the
WASD keys and the spacebar key to jump. The character must reach the goal at the end
of the level to win the level. If the character collides with an enemy or hazard they will
lose a life and be reset back to the beginning of the level, where they may make changes
to the level. If the character runs out of lives they are presented with a game over and
returned to the main menu. The entertainment that the gameplay provides, along with the
creative opportunities that good quiz scores allow for, create a system where the user is
inspired to replay levels and get better quiz scores so that they can craft their optimal
solution to each level.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.3 User Characteristics

Super Math Maker will target kids in the school grades of 4th through 8th who
have an understanding of the math topics that they’ve been taught. The user should have a
basic understanding of using a keyboard and mouse as well as using WASD keys to
move. They should have mathematical skills that at least allow for fraction arithmetic,
and optionally ranging up to geometry and pre-algebra. Users do not need to be skilled at
platformers in order to complete this game. The ability for the user to add assists to each
level means that they can place them in areas that they may not be able to complete
otherwise.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.4 Constraints

2.4.1 Regulatory Constraints:

The math topics that are covered in this game must fall between the 4th and 8th
grade range of the Massachusetts Mathematics Curriculum Framework. This means that
elementary topics such as addition and subtraction are too basic, and algebra or calculus
are too complex.

2.4.2 Design Constraints:

The game must have an educational component that revolves around mathematics.
While certain sections of the game may provide breaks from education, gameplay can not
solely focus on platforming. The game must also be easily navigated by at least
elementary school students in the 4th and 5th grade, meaning that menu navigation may
not be overly complex and cannot use sophisticated vocabulary.

2.4.3 Hardware Constraints:

The game must be able to run on low end hardware, which is defined as computer
parts dated as old as 2015 to 2018. The game may not use intensive graphics techniques
such as ray tracing and 4k resolution textures. Additionally, users must control the game
using a keyboard and mouse.

2.4.5 Software Constraints:

The game must be created using the Godot game engine and be able to run on
Windows, Mac, and Linux operating systems.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.5 Assumptions and Dependencies

2.5.1 Assumptions

It is assumed that the user will have an operational computer that runs hardware
that was released no later than the year 2015. Users are also assumed to have a keyboard
and mouse that is connected to their machine somehow. It is assumed that users’
machines will be running modern operating systems (e.g. Windows 10, MacOS Sonoma).

2.5.2 Dependencies

The game utilizes the Godot API for its libraries and functionality. These are
implemented into the game mechanics in the game’s infrastructure.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

2.6 Apportioning of Requirements

There are features that would serve to benefit the game, but are out of the scope of
this project and will be scheduled for a future release. The features include
customizability for the character in the game, such as different outfits and accessories
such as hats. A wider variety of assists such as sidekicks will be added that protect the
character from threats. New math topics will be implemented to test the user’s knowledge
further like algebra and probability. Finally, a future release will include a greater
quantity of levels that users can build upon to reach the goal.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

3 Specific Requirements

1. Keyboard and mouse will be required.
2. The game will export as an executable file.
3. The game will output to a display with a minimum resolution of 800x600
4. The user will be able to choose between playing the game, changing the settings
or quitting the application.
5. A Graphical User Interface (GUI) will exist to display options within the game to
the user.
6. There will be an educational aspect to the game that is focused on mathematics.
6.1. Each level will begin with a mathematics quiz which contains questions
based on user selected math topics such as geometry, fractions, and
pre-algebra.

6.1.1. Equations will be used for each quiz question that tests user’s on
mathematical topics in the 4th grade to 8th grade range, according to the
Massachusetts Mathematics Curriculum Framework.

6.1.2. Questions will be chosen randomly at runtime from a list of equations,
depending on the chosen topic.

6.1.3. A point system will exist that contains a count of the number of points
owned by the user.

6.1.3.1. Points will be awarded for each correctly solved question,
with difficult questions granting more points.

6.1.3.2. An incorrect solution to a question will deduct points.

6.1.4. The quiz will feature an input parsing mechanism.

6.1.4.1. Answers to quiz questions will be parsed in such a way as
to avoid correct answers being marked incorrect (i.e. inputting “3.5”
instead of “3.50” will not be counted as an incorrect answer).

7. Gameplay will exist that utilizes 2-D platformer mechanics.
7.1. Levels will exist for the user to progress through.

7.1.1. Platforms will exist in each level that create a path through the level.

7.1.2. The user will be able to reset each level.

7.1.3. The user will be able to pause the game during each level.

7.1.4. The completion of a level will allow for navigation to a subsequent
level until all levels are complete.

7.2. Each level will contain a user controlled entity known as the character.
7.2.1. The character will be able to move left, right, and can jump.
7.2.2. The character will be able to wall jump.
7.2.2.1. Wall jumping will occur when the airborne character jumps
while in a collision with a wall.

7.2.3. All movements by the character will be animated.

7.2.4. The character will have the ability to melee attack, dealing damage to
enemies within a short range.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

7.24.1. Melee attacks will be able to be directed up, down, left and

right.
7.2.5. The character will spawn with a certain amount of lives.
7.2.5.1. Death will occur through contact with enemies and hazards
on a level.
7.2.5.1.1. Enemies will exist in each level of the game.

7.2.5.1.1.1. Enemies will be able to move and attack.
7.2.5.1.1.1.1. There will be various types of enemies that each
behave differently.
7.2.5.1.1.1.2. Enemies will change their behavior when in the
presence of the character.
7.2.5.1.2. Hazards will exist in each level of the game.
7.2.5.1.2.1. Hazards will be static environmental features in
levels that can harm the character.

7.2.5.2. Death in a level will decrease the life count by one.
7.2.5.2.1. When the character dies with zero lives remaining, the
game will be over.
7.2.5.2.2. When the character dies with more than zero lives

remaining, the game will return the character to the beginning
of the same level.

7.2.5.3. Lives will carry over between each completed level.
7.3. A goal will exist in each level to signify that the character has completed the
level.

7.3.1. Some levels will have secret alternative goals that can be found
through exploration.
8. Assists will be able to be placed on each level by the user.
8.1.1. Assists will consist of springs, teleporters, extra platforms, power-ups,
etc..
9. A shop will be available to the user to spend points on assists and extra lives.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

4 Modeling Requirements
4.1 Use Case Diagram

The diagram contains cases that will occur within the game, Super Math Maker
and their relation to each other. Each use case is shown within its own oval and relations
are shown between use cases with arrows and descriptors, includes and extends. Each
use case is then outlined within the charts below the diagram. In the diagram below, the
user has two primary use cases: Play Game and Quit. When the user chooses to play the
game, they will have several goals starting with selecting a math topic to play with. The
user will then have the goal of completing a quiz based on the selected topic. The user
will also be able to edit the level that they are in, using items purchased from a shop to do
so. For guiding the character through the level, the user will be able to pause the game,
reach the level goal, or reset the level. Upon pausing the game, the user will be able to
access the settings in order to change settings that they feel necessary. When the user
navigates the character to the goal, they will then be able to navigate to the next level.

Super Math Maker

Open Settings ®
/ <<includes
<<extends>>

<<includes>>

/Change Settings
Edit Level \/

<eextendsss

Reset Level <<extendsss

Reach Level Goal
<<extends=>

<<includes=>

Start Next Level

Guide Character
Through Level

T

User

Select Math Topic

Play Game
<<inciugess>

Play Pre-Level
<<includes=:> Quiz

Use case diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

Use Case Name: | Play Game

Actors: User

Description: Initiates the gameplay loop by pressing play game on the menu.
Type: Primary

Includes: Select Math Topic

Extends: None

Cross-refs: Requirement 4

Uses cases: Select Math Topic, Edit Level, Guide Character Through Level

Use Case Name: Quit

Actors: User

Description: Closes the game when this option is chosen from the main menu.
Type: Primary

Includes: None

Extends: None

Cross-refs: Requirement 4

Uses cases: None

Use Case Name: | Select Math Topic

Actors: User

Description: User chooses a topic for which the game's timed quizzes will focus on.
Type: Secondary

Includes: Play Pre-Level Quiz

Extends: None

Cross-refs: Requirement 6.1

Uses cases: Play Pre-Level Quiz

Template based on IEEE Std 830-1998 for SRS. Modifications

Revised: 10/24/2019 4:57 PM

(content and ordering of information)

Use Case Name:

Play Pre-Level Quiz

Actors: None

Description: A timed quiz will begin where questions will be presented and the user
will attempt to answer them until the timer reaches zero, at which time
the quiz will close and reward points for questions completed.

Type: Secondary

Includes: Edit Level

Extends: None

Cross-refs: Requirement 6.1

Uses cases: None

Use Case Name: | Edit Level

Actors: None

Description: The user will drag and drop various assets onto the platforming level to
create their own solutions for the level.

Type: Primary

Includes: None

Extends: None

Cross-refs: Requirement 8

Uses cases: Use Shop

Template based on IEEE Std 830-1998 for SRS. Modifications

Revised: 10/24/2019 4:57 PM

(content and ordering of information)

Use Case Name: | Use Shop

Actors: None

Description: The user will be presented with a shop full of assets with prices for each.
The user will purchase assets from this shop that can then be dragged and
dropped onto the level via the edit level case.

Type: Secondary

Includes: None

Extends: Edit Level

Cross-refs: Requirement 9

Uses cases: None

Use Case Name:

Guide Character Through Level

Actors: None

Description: The user will now control their character and attempt to reach the goal by
using the controls allocated to the character, while avoiding threats on the
level.

Type: Primary

Includes: Death via Threat Collision

Extends: None

Cross-refs: Requirements 7.1, 7.2, 7.3

Uses cases: Reset Level, Pause Game, Reach Level Goal

Template based on IEEE Std 830-1998 for SRS. Modifications

Revised: 10/24/2019 4:57 PM

(content and ordering of information)

Use Case Name: | Reach Level Goal

Actors: None

Description: When the character collides with the goal object the level will complete
and the user will have won the level.

Type: Secondary

Includes: Start Next Level

Extends: Guide Character Through Level

Cross-refs: Requirement 7.3

Uses cases: Start Next Level

Use Case Name: | Start Next Level

Actors: None

Description: The user selects the next level for the game to load.

Type: Secondary

Includes: None

Extends: None

Cross-refs: Requirement 7.1.4

Uses cases: None

Use Case Name: | Reset Level

Actors: None

Description: This will reset the character back to the start of the level to ensure the
character cannot get indefinitely stuck or if the user would like to
rearrange placed assets from the edit phase.

Type: Secondary

Includes: None

Extends: Guide Character Through Level

Cross-refs: Requirement 7.1.2

Uses cases: None

Template based on IEEE Std 830-1998 for SRS. Modifications

Revised: 10/24/2019 4:57 PM

(content and ordering of information)

Use Case Name:

Pause Game

Actors: None

Description: When activated, the level will no longer proceed until the user deactivates
this function. This will also bring up a menu for the user to either quit the
game or edit the settings.

Type: Secondary

Includes: Open Settings

Extends: Guide Character Through Level

Cross-refs: Requirement 7.1.3

Uses cases: Open Settings

Use Case Name: | Open Settings

Actors: None

Description: When activated a settings menu will open with options to edit various
game settings.

Type: Secondary

Includes: Change Settings

Extends: None

Cross-refs: Requirement 4

Uses cases: Change Settings

Use Case Name: | Change Settings

Actors: None

Description: When the user changes settings the game will change accordingly to these
changes.

Type: Secondary

Includes: None

Extends: None

Cross-refs: Requirement 4

Uses cases: None

Template based on IEEE Std 830-1998 for SRS. Modifications

Revised: 10/24/2019 4:57 PM

(content and ordering of information)

4.2 Class Diagram

The class diagram below contains descriptions of each class that will make up
Super Math Maker, by outlining the title, fields, and methods of each class. The class that
exists above all others is the Game Manager. This class contains high level information
regarding the state of the game, such as the amount of money and lives remaining that the
user has, the current level number, and the selected math topic. It communicates with
other classes like the Quiz class, Level class, and Level Editor class throughout gameplay.
The Quiz class contains the timer for the quiz, the amount of points that the user has
earned, and the topic of the quiz. The quiz is composed of the question class, since it
contains a set of questions that the user answers. The questions contain both a prompt and
a solution which are stored as strings. The Level class contains the variety of objects and
entities that exist as well as the level number. It is composed of the Entity and
StaticObject class. The Entity class stores the position and velocity of entities like the
Player and Enemy classes that it inherits. The Player class contains information such as
the speed, jump height, attack damage and health of the character. It contains methods
that allow for modification of all of these attributes. The enemy class holds the health and
type of enemy and inherits classes for each type of enemy. The Flyer class contains their
speed of flight and current target. The Walker class also contains speed as well as a
boolean for the ability to walk over edges. The Jumper class contains the speed that they
can jump at and a method to attempt to jump. The Level Editor class contains information
about how the user is choosing to modify each level, like the selected object, a list of user
placed objects, a list of potential objects and the price for each object. It contains methods
that allow the user to add and remove certain objects from the level. It is aggregated by
the StaticObject class, which contains a position variable. The StaticObject class inherits
three classes for different types of objects. The Plaform and Trap objects contain an
enumerated type, while the Goal class simply represents the objective of the level.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

Game Manager

+money : Integer

+ lives : Integer

+ currentLevel : Integer
+ topic : Enum

+ beginQuiz(topic : Integer)
+ promptTopic()

+ beginEditing ()

+ beginLevel()

+ addMoney(value: Integer)
+ deductLife()

]

Bution
Level
Level Editor +text: String
-id : Integer
Quiz + selected : StaticObject - objects - T
+ newObjects : Array <StaticObject> ArTay<StaticObject>
- timer : Timer + purchaseableltems: Array<StaticObject> - enities : Array<Entity>
- points : Integer + prices : Array<integer>
- topic : String [~ ®: loadexiLevel()
+ checkEntityCollision(entity1 : Entity, entity2 : Entity)
: : Object "
+ generateQuestion() ;ﬂas‘l’t‘l’g“’flce“:;'emd : StaticObject, objects - Ject + checkObjectC - Entity, object : StaticObject)
+ checkAnswer(input : String) + removeObject(selected : StaticObject, abjects :
+ decrementTimer() Array<StaticObjects>)
+ stanQuiz()
Question Entity
+ questionStr : String
! memerSir Siing + position : Vec2 StaticObject
+velociy : Vecz
+position : Vec2
[Platform | Trap |
Goal
- type : Enum | - type : Enum ‘
Player
- moveSpeed : Float Enemy
- jumpHeignt : Fioat .
- attackCooldown : Float : "e':‘f’ ‘;‘::msgfr
- attackDamage : Float type : Integ
- Health : Float P EnemyState
+ attack(direction : Enum) +state : Enum
+ move(directio
+jump(strengt + stateUpdate()
Float)
+ spawn(position :
Vecz)
Fiyer Walker
- flySpeed: Float - canWalkOffEdges :
- target : Entity Boolean
- walkSpeed : Float
+ Integen) Jumper
+ gotoSpot(pos : Vec2) jumpSped - Fioat

“tryJumpy()

Class diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

Class Name

Game Manager

Description | Singleton that handles all persistent data. Changes and keeps track of
game state.
Extends None
Attributes Money Integer | Currency used for buying assists.
Lives Integer [How many times the character can take
damage before having to restart the level.
CurrentLevel Integer | Index into levels to find where they
currently are
Topic Enum | What the question looks at to decide what
to make
Operations | beginQuiz() Starts a timer and creates questions for the
user to answer.
promptTopic() shows a menu of types of questions.
beginEditing() start the level editor phase.
beginLevel() Starts the gameplay part of the level. Spawns
the character and parents the camera to him.
addMoney(amount) increments money based off type of question

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Class Name

Level Editor

Description | Allows placement of items on a level before it starts.

Extends None

Attributes selected Object ptr The current item being manipulated
newObject | List<StaticObject> | All new items to be added to the level
S
purchaseab | List<StaticObject> | What the user can buy
leltems
prices List<Integer> How much the elements of

purchaseableltems cost

Operations AddObject(StaticObject obj, Takes an object and adds it to the list of new
Vec?2 pos) items
RemoveObject(StaticObject Removes item from list of new items
obj)

Class Name | Level

Description | Game level data such as entities, character, tiles.

Extends None

Attributes id Integer Index into levels
staticObjects | Tilemap<StaticObjects> | List of all static objects

such as platforms
entities List<Entities> All dynamic entities such
as character, enemies
Operations loadNextLevel() Increments and loads the next level

checkEntityCollision(Entity
,Entity) : Bool

Checks for hitbox collision between
entities in the level.

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Class Name | Quiz
Description | Creates, displays, and verifies user answers to questions.
Extends None
Attributes timer Timer How long left to answer
questions.
money Int How much money have
they made
topic Enum What type of questions
should the quiz create
Operations generateQuestion() : Creates a question of desired topic
Question
checkAnswer(string) : Verify string inputted matches with
Boolean desired result.
decrementTimer() update timer GUI widget
startQuiz() initialize quiz assets, set timer to desired
time
Class Name Question
Description | Generated from Quiz, contains the question and answer.
Extends None
Attributes questionStr String Question in readable form
answerStr String Answer that user must

match

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Class Name | Entity
Description | A dynamic object that will move around in levels.
Extends None
Attributes Position Vec2 Where is the entity in the
world
Velocity Vec2 How is the entities
movement changing
Class Name | StaticObject
Description | Something in the world that never moves.
Extends None
Attributes Position Vec2 Where is the entity in the
world
Class Name | Flyer
Description | Enemy the freely flies around the map and chases the character.
Extends Entity
Attributes flySpeed Float how fast can it move in the
air
target Entity who if anyone should it
chase
Operations fly(direction) Flies in a specific direction
gotoSpot(Vec2 pos) Go to a specific spot
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM

(content and ordering of information)

Class Name

Walker

Description | A basic enemy that walks back and forth.
Extends Entity
Attributes walkSpeed Float how fast can it move
canWalkOftfE | Bool Should it walk right off an
dges edge or should it reverse
directions
Operations changeDirection() Flips direction
Class Name | Jumper
Description | Enemy that jumps in the air to hit the character.
Extends Walker
Attributes jumpSpeed Float How fast does it go after
jumping
Operations tryJump() Sees if it can jump and if so jump
Class Name | Platform
Description | Something the character can stand on.
Extends StaticObject
Attributes type Enum What type is it

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

Class Name | Trap

Description | Something static that can harm the character.

Extends StaticObject

Attributes type Enum What type is it
Class Name | Goal

Description | What the character must touch to win the game.

Extends StaticObject

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

4.3 Sequence Diagrams

The following sequence diagrams outline how the game will work through certain
actions taken by the user. In the first diagram below, the sequence of the user playing
through a pre-level quiz is described. The user presses the start button, which then tells
the game manager to begin the quiz. A loop is then entered where the game managers
tells the quiz to generate a question and then presents the question to the user and gets
input. The game manager then passes this input back to the quiz, which returns the result
of the question (right or wrong). If the answer is right, then the user is rewarded with
money. If the answer is wrong, the user is notified that they provided an incorrect answer.
This loop continues until the quiz timer reaches 0.

Flay Button : Button ‘Quiz :GameManager

User
i

=rl|_|_| beginQuiz()

pressButton()

start()
[timer = 0] getinput()

i

| ; loop !

| X [j‘ generateQuestion()
i [

checkAnswer{input)
result

.________________________‘:_:,.

alt [addMoney(question\alue)

[result = true]

[result = false]

|:|<1 decrementTimer()

L
|

I

i

i

]

]

]

]

]

]

i

i

i

i

i

i

i i
]

]

]

| !
] i
i i popUp("Incorrect Answer”)
i i
i [
i W
| 3
]]
]

]

]

]

]

i

i

i

i

i

i

i

]

]

]

]

]

]

1

i

i

i

i

Pre-Level Quiz sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

The diagram below depicts the sequence of the user navigating the character through a
level. The game manager spawns the player at the beginning of the level, and then a loop
is entered where the user navigates through the level until they run out of lives. While the
player is alive, the user navigates them through the level, and the level constantly checks
to see if entity collision has occurred with the player. If the player is at the same position
as the goal, then they win the level and are navigated to the next one. If the player is at
the same position as an enemy or hazard, they are deducted a life and must respawn at the
beginning of the level. If the player runs out of lives, they are shown a failure screen.

; ; :GameManager Level :Player

loop J i i
[lives = 0] : D E spawn(startPosition) |
loop) Ij i move(direction) i '"[:I
[playerAlive] : i [5* checkEntityCaollision|Player, ThrcatT:,I
: : lfh checkObjectCollision(Player, Goal) :ul
alt Ij__ showWinScraan() i i i
playerPosition selectNextLevel() N i E
= ” loadMextLevel() . !
goalPosition] [:]—DD ;
................ O R S
i : deductLife() D‘ i
[playerPosiion D= showDeathScreen() [:] i i
threatP-osition] [5] ssiaciRespavn() =[:_'| i i
|j‘ showFailScreen() [é] : E
Guide Character through Level sequence diagram.
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM

(content and ordering of information)

4.3 State Diagram

The state diagram below depicts the various states that Super Math Maker has and
how they are reached. The game starts in the main menu state, which can exit the game
through the quit button. From there, the select topic state can be reached through the play
game button. Once a topic is selected, the quiz state is reached. The quiz state goes to the
level editor state when the quiz is finished. Once the user starts the level, the level
platforming state is entered. From there, the user can reach the pause menu state through
the pause button. The pause menu can go to the settings menu or go back to the level
platforming state. From the level platforming state, the death screen state, win screen
state, or no lives remaining screen state can be reached depending on if the character
collides with enemies, hazards, or the goal. The death screen state goes to the level editor
when the user restarts the level. The win screen state goes to the quiz state when the user
selects the next level. Finally, from the no lives remaining screen state, the user can select
to go back to the main menu state.

N Y
o — —®
‘ Quit
ve N
‘ Main Menu
. /
Play Game
s ™
‘ Select Topic
b /' Topic Selected
e ™
| Quiz ‘
T e
Quiz Finishsed
IS ™
- :':I Level Editor ‘
= Y,
Main Manu Start Level
tart Leval
Nt Lawel Reset Level
Restart Level
/ ‘ - ~ Pause Y ——— \
4{ Level Platforming |_ ’ Pause Menu ‘
 — L v Resume K /
| M
J Death Screen g
T _ , Enter Settings Exit Settings
Enemy/Hazard Collision Vs ~
) ‘ Settings Menu
ﬂ Win Screen < |
Goal Collision
M /
' ™
| NoLives

I Remaining Screen |~
& J Enemy/Mazard Collision and lives = 0 /

State diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

S Prototype

The prototype consists of a main menu where the user can select between playing
and closing the game. If the user chooses to play the game, they will be presented with a
series of math topics to choose practicing their math skills on. These topics are fractions,
geometry, and pre-algebra. After selecting their desired topic, the user will be quizzed.
The user will earn points depending on how many questions they answer correctly. These
points can be redeemed for objects that will assist them in completing the next level, such
as springs, platforms, and powerups. Each level consists of platforms the character must
jump through and enemies the character must either avoid or defeat. There are several
enemy types, such as walkers, jumpers, and flyers.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

5.1 How to Run Prototype

In order to access and run the prototype, a Windows computer with a modern web
browser is required. The Prototype can be accessed from the project’s website. In order to
run it, download the desired file from the website! ", by clicking on the “Prototype” link
and unzipping the downloaded folder. Both the “Game.exe” and “Game.pck” files must
be present for the game to function correctly. Once inside the game, the user can navigate
through the Ul elements and end up at a very basic platformer game.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

5.2 Sample Scenarios

B Project (DEBUG) — [} ®

Super Math Maker

Play Game

Exit Game

When the user launches the game they will be brought to the main menu screen.

B Project (DERUG) - O X

Pick Question Type
Fractions

Geometry

Pre-Algebra

When the user then chooses play and then they can choose between pre-algebra,
geometry and fractions for their problem set.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

B Project (DERUG) - O X

Solve for X
2X+4=0

For this example, the user will choose pre-algebra. They will then be given a timed quiz
which they have about a minute to answer as many questions as possible.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

B Project (DEBUG) — O X

Level Editor

Item 1

Item 2

Item 3

Item 6

ek Play Level

Money Left

After this quiz they will be sent to the level editor with buttons that will allow them to
buy items. They can also move their mouse to an edge of the screen to scroll. They are
allowed to view the entire level to plan for what's ahead.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

B Project (DEBUG) — O X

The user is then taken to the game part. They are free to run around and test out the
controls. This is where the bulk of the game will take place. They can also press escape to
get to the pause menu.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

6 References

[1] “Massachusetts Curriculum Framework for Mathematics,” Massachusetts Department
of Elementary and Secondary Education, 2017. [Online]. Available:
https://www.doe.mass.edu/frameworks/math/2017-06.pdf.

[2] D. Stark, G. Higgins, N. Haselton, A. Corkhum, and C. Jimenez, Super Math Maker,
https://super-math-maker.github.io/Super-Math-Maker/ .

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

https://super-math-maker.github.io/Super-Math-Maker/

7 Point of Contact

For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 10/24/2019 4:57 PM
(content and ordering of information)

